Locality sensitive hashing for fast computation of correlational manifold learning based feature space transformations
نویسندگان
چکیده
Manifold learning based techniques have been found to be useful for feature space transformations and semi-supervised learning in speech processing. However, the immense computational requirements in building neighborhood graphs have hindered the application of these techniques to large speech corpora. This paper presents an approach for fast computation of neighborhood graphs in the context of manifold learning. The approach, known as locality sensitive hashing (LSH), has been applied to a discriminative manifold learning based feature space transformation technique that utilizes a cosine-correlation based distance measure. Performance is evaluated first in terms computational savings at a given level of ASR performance. The results demonstrate that LSH provides a factor of 9 reduction in the computational complexity with minimal impact on speech recognition performance. A study is also performed comparing the efficiency of the LSH algorithm presented here and other LSH approaches in identifying nearest neighbors.
منابع مشابه
Using Locality Sensitive Hashing for Fast Computation of Correlational Manifold Learning based Robust Features
This paper considers the application of a random projections based hashing scheme, known as locality sensitive hashing (LSH), for fast computation of neighborhood graphs in manifold learning based feature space transformations in automatic speech recognition (ASR). Discriminative manifold learning based feature transformations have already been found to provide significant improvements in ASR p...
متن کاملMarkov Chain Monte Carlo for Arrangement of Hyperplanes in Locality-Sensitive Hashing
Since Hamming distances can be calculated by bitwise computations, they can be calculated with less computational load than L2 distances. Similarity searches can therefore be performed faster in Hamming distance space. The elements of Hamming distance space are bit strings. On the other hand, the arrangement of hyperplanes induce the transformation from the feature vectors into feature bit stri...
متن کاملHyperplane Arrangements and Locality-Sensitive Hashing with Lift
Locality-sensitive hashing converts high-dimensional feature vectors, such as image and speech, into bit arrays and allows high-speed similarity calculation with the Hamming distance. There is a hashing scheme that maps feature vectors to bit arrays depending on the signs of the inner products between feature vectors and the normal vectors of hyperplanes placed in the feature space. This hashin...
متن کاملDiffusion Hashing
With the worldwide spread of the broadband Internet, massive multimedia data including texts, images, and videos are increasing explosively and available for interactive applications over the Internet. At the same time, more and more attention has been paid to aiming at fast retrieval from massive multimedia databases. Hash-based Approximate Nearest Neighbor (ANN) search is a technology that ac...
متن کاملLocality-Sensitive Hashing with Margin Based Feature Selection
We propose a learning method with feature selection for Locality-Sensitive Hashing. Locality-Sensitive Hashing converts feature vectors into bit arrays. These bit arrays can be used to perform similarity searches and personal authentication. The proposed method uses bit arrays longer than those used in the end for similarity and other searches and by learning selects the bits that will be used....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013